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Abstract 

We find criteria on the cooling system to minimize effects of 

RF stacking on the cooling tail. 

‘1. Introduction 

A scheme /l/ has been recently proposed to produce a 

high-intensity antiproton beam in a stochastic cooling 

accumulator. According to this scheme, the coasting beam of 7's 

extracted from the Debuncher ring will occupy the injection orbit 

of the accumulator ring with a total momentum spread of about 

0.2%. This beam is to be bunched adiabatically. Then the buckets 

are transformed to moving(decelerating) buckets, slowly enough to 

obtain as large a capture efficiency as possible. The amount of 

deceleration depends on the physical distance which must be 

cleared by the bunch. After deceleration is completed, the RF is 

turned off slowly to allow the beam to debunch adiabatically. The 

beam is now ready for stochastic cooling. The debunched beam is 

soon moved to down in the stream by the tail cooling system in 

order to make room for the next stacked beam. 

Although effects of RF stacking on the already stacked beam 

have been pointed out by many people, we do not know 

quantitatively much about this problem. This is a reason that the 

design of the tail cooling system has been not yet determined in 

detail. In the present paper, we understand the nature of the 
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above effect and obtain some criteria for designing the tail 

cooling system. 

There are in general two effects that RF stacking gives an 

already stacked beam, Iqhich shall be called ' tail N because the 

main part of an accmulated beam has the common name of " core I'. 

The larger is phase-displacement acceleration and the other is 

so-called dilution coming from non-adiabatic change of RF 

parameters, say, Vrf (t) and fr+W I which is understood to be 

enhanced by non-linearity of RF stacking dynamics. 

Phase-displacement acceleration is simply related to the 

phenomenon of phase-flow as a consequence of Liouville's theorem. 

Such phase flow is determined only by the nature of a dynamical 

system. It would, in principle, be possible to determine 

phase-flow from Boltzmann's equation 

+ C%fl -0, (1) 

where f is the distribution function, H is the time-dependent 

Hamiltonian, including non-linear terms for the present case, and 

c , 3 is the Poisson bracket. This, however, has considerable 

mathematical difficulties. In the present report, we therefore 

investigate the structure of the dynamical system which describes 

RF stacking with a help of numerical experiments. We note that a 

collection of phase points in the phase space behaves as an 

incompressible gas. From this incompressible gas analogy, it is 

easy to suppose that phase-flow close to the RF bucket is most 
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active. Thus we shall particularly concentrate our attention on 

the phase space region where the RF bucket annihilates, near the 

separatrix. 

In the third section, we discuss dynamics of tail cooling 

with a help of the Fokker-Planck equation, which has become a 

common technique in a study of stochastic cooling. From the tail 

cooling point of view, the effects of RF stacking can be regarded 

as deformation of the tail which occurs within a limited period 

(that is, 100 msec), tail cutting due to phase-displacement and 

non-uniform dilution in the tail due to non-adiabatic diffusion. 

An easy method for estimating beam-loss due to phase-displacement 

is presented and used to obtain the criterion which should be 

imposed on the cooling system. 
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2. RF Stacking & Its Effects on Cooling Tail 

2-a Stacking Process 

The stacking process consists of the following four phases: 

1. Adiabatic Capture. The injected coasting beam is adiabatically 

captured in the RF bucket, whose phase space area is slowly 

increasing until it becomes a little larger than the phase space 

area occupied by the beam. The period which adiabatic capture 

requires is chosen from general considerations about the 

adiabaticity of a harmonic oscillator /2/ and is chosen equal to 

3 rs I where 7~ is the period of the synchrotron oscillation at 

the final stage of this step. (See Fig.l-a) 

2. Alteration (Stationary Bucket+ Moving Bucket). An adiabatic 

alteration of the RF parameters, say, VP+ and f+, is performed in 

order to convert a 11 stationary bucket N into a W moving bucket I', 

capable of changing the mean energy of the particles trapped 

inside.(See Fig.l-b) 

3. Deceleration. A period of deceleration follows, employing a 

moving bucket of constant area and constant synchronous phase 

angle +s. (See Fig.l-c) 

4. Adiabatic Debunching. The RF is turned off adiabatically after 

it has been transformed again into a stationary bucket of the same 

area from a moving bucket. (See Fig.l-d) 

The above process is performed by manipulating both 

parameters of the RF, voltage V and frequency f,$. In Fig.2, the 

RF voltage V and the synchronous phase angle qs relevant to fkf 
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are shown as functions of time. In addition, other RF 

parameters /3/ are listed in the same figure. Since the general 

nature of phase space dynamics for RF stacking has been discussed 

in detail in the previous report/4/, we will not examine it 

extensively except for the present problems of interest. 

Results of numerical simulations already shown in Fig.l-a 

rvFig.l-d, also give the energy distribution of an injected and 

released beam on the stacking orbit. We obtain a final full 

energy-spread of 0.21% and a final capture efficiency of 98%. 

L-b Phase-Displacement 

As a consequence of Liouville's theorem, the phase area 

transported downward in the energy plane by a decelerating RF 

bucket must be accompanied by the upward trasport of an equal 

phase area in the region outside the bucket, a property known as 

phase-displacement, which is seen in Fig.3. This phenomenon gives 

rise to a serious problem in the previous pulse , which has been 

moved towards the cooling core by the tail cooling system during 

one cycle. That is, following phase flow due to the mentioned 

mechanism, a fraction of the previous pulse is transported upward 

from the region where a new pulse -is deposited. Then the fraction 

transported upward must be understood to be lost out of the 

region where the tail cooling system is effective, since it is 

removed more and more upward in the energy plane every cycle due 

to the unique direction of motion of a decelerating bucket. 

From the tail cooling point of view, we are not very 
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interested in the detailed nature on the phase space (E:,+) of 
phase-displacement, because stochastic momentum cooling is usually 

discussed on the energy plane alone after averaging out the phase 

variable. Therefore, in order to estimate quantitatively the 

effects of phase-displacement on the tail, we consider the 

behaviour of phase points which are located in a small energy bin 

at the initial time. We divide the energy region of interest into 

many small bins. One-thousand phase points are distributed in 

each bin and simulated for an entire RF stacking. After one 

stacking cycle, these points will be located mainly in higher bins 

as a result of phase-displacement. Hence, such a procedure yields 

a kind of a transfer matrix which characterizes quantitatively 

over-all effects of RF stacking on the tail. This transfer matrix 

is involved in tail cooling calculations later. We also note that 

the critical region for phase-displacement exists, as seen in 

table 1. Roughly speaking, the fact indicates a criterion which 

must be imposed on the tail cooling system so as to minimize 

particle-loss. If all parts of the stacked pulse are moved toward 

the core beyond this critical regions, our anxiety about beam-loss 

should vanish. 

2-c Non-Adiabatic Diffusion 

RF stacking must be performed within a limited period of one 

cycle time in order to retain enough time for tail and core 

cooling. Such a situation leads to non-adiabatic diffusion 

particularly in the tail region of interest. It is a kind of 
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dilution and its qualitative nature is explained schematically in 

Fig.4. 

Even the end of the tail is far from the synchronous stable 

point of a stationary or moving bucket, and it is therefore 

apparently impossible to linearize the motion of a particle in the 

tail region. Thus it is just the non-adiabatic behavior of a 

highly the non-linear system that we should investigate. For the 

moment, we consider the mathematical structure of such a system. 

We may write the dynamics of RF stacking in the difference 

equations 

E &+I = E, + e Vb) Sim+. 
t 

(2-l-a) 

4) 
E tm.4 -E, fiti = 4% 1 
(CL ' 

(2-1-b) 

where (E w , +I, 1 are the energy and the electrical phase angle with 

which a particle enters the cavity at the time of transit, 

W(n) , q0-Q 1 are the RF voltage and the RF angular frequency 

programmed as functions of time or step n, wO is the angular 

rotation frequency of a particle with the fixed energy E, , (3D is 

the relativistic beta corresponding to the energy E, , and 7 is 

l/ lT2 - 1/a;= l 
If changes of the variable and the parameter 

(2-Z) 
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where h is the harmonic number, are made, we have the transformed 

difference equations 

(2-4-a) 

4) M+l = $4 + 2rk?G”+\ +=h-jh (I + 7 c,,,+,) (2-4-b) 
. 

To write down the difference equations in the form of exact 

differential ones we may use a $-function: 

(2-S-a) 

(2-5-b) 

where T(t) is the time period corresponding to one iteration of 

the mapping and the rotation period of the synchronous particle. 

Here q = Q.(t)t+TO; R(t)=2TC/T(t) and the g -function of period 

2TL is given by the Fourier expansion 

s,(q = & ( i + 22 Cos nT) HeI . (z-6) 

Thus the dynamics of RF stacking is described by the Hamiltonian 

(Z-7) 

Futhermore a change of the time scale 
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(z-8) 

yields the transformed Hamiltonian 

H'(kct")= 1 $ + f(t*)(E+T+2) 

+ ev (t', 

(3%. h cos+ LW . (Z-9) 

It is trivial to obtain the usual Hamiltonian for stationary 

stacking from (2-9). After neglecting rapidly oscillating terms 

in (2-9), we have the so-called averaged Hamiltonian 

<lP> = q c2 + ftt”) E t AlV) cosq (2-10) 
7 

with 

where we also neglect the third term in (2-9) for the 

it is small compared with the first and second term. 

equations derived from (2-10) are written in the form 

(2-11) 

reason that 

Canonical 

(2-12-a) 

(2-12-b) 

Thus, the solutions (ES ,qS ) for the synchronous point are 
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(2-13-a) 

(2-13-b) 

We understand that stationary deceleration of RF stacking can be 

made under the parameter conditions 

; (P) = const, 

3Ltt* 1 = const or V(t*) = const. 

It is difficult to discuss analytically the adiabaticity of 

the dynamical system (2-10) under slow changes of its parameters, 

that is, f(t*) and V(P). So we consider a sequence of infinite 

phase points, whose behaviors are determined by the 

Hamiltonian (2-9). We assume that phase points comprising the 

sequence have the same initial condition 

(5 = Eo A-t, t* = 0. 

We can regard a energy spread among these phase points after the 

whole change of f and V, as a measure of non-adiabatic diffusion. 

The energy spread AE obtained by numerical calculations is shown 

as a function of energy E in Fig.5. 

We can see the remarkable fine structure in the AE-E curve and 

the existence of the critical region which is consistent with the 

phase displacement mentioned in the previous subsection. This 

fine structure seems to us to be directly relevant to the problem 
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of stable or unstable solutions for the non-linear Mathiew 

equation 

d2w 
TiF -I- 

(d - 2 (3’ CDS rt ) 0s w = 0 f 

because V(e) is usually assumed to change following a cosine-like 

function of time. However, since the fine structure itself is not 

so important for the present discussion, we shall not examine it 

extensively. Meanwhile absolute values of diffusion in the tail 

region do not seem to be negligible whenever there are gradients 

in the particle distribution. Thus these effects will be involved 

in cooling calculations as periodic blow-up of the tail. 



13 

3. Tail Cooling 

3-a Estimation of Beam Loss due to Phase Displacement 

Stochastic cooling in the energy plane is usually discussed 

by the Fokker-Planck equation /5/ 

where q is the density distribution function, and F,D, and D, 

are cooling parameters of the system which are usually called the 

drift coefficient and the diffusion coefficient. Solving (3-l), 
we can know in principle the time evolution of the particle 

distribution. In particular, we shall consider the time evolution 

of the stacked pulse over one injection cycle Tc. 

For the sake of simplicity, we assume: 

1) F and (D,+DLv) are constant in the region of interest, 

(D,+D,v ) = 5 . 

2) the distribution of a RF stacked beam is Gaussian at t=O, 

where N, is the number of particles per injection, Co is the 

standard deviation, and m. is the position of the initial 

distribution center. These assumptions lead to the linear 
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Fokker-Planck equation 

Then we have the exact solution of (3-2) 

with m = m,+Ft, 

(3-2) 

(3-3) 

The solution (3-3) apparently represents the parallel displacement 

of the distribution associated with increasing of the standard 

deviation. Now, using the solution (3-3), let us calculate the 
number of particles ,say AN, which after one cycle is still left 

in the upper stream above the critical region mentioned in the 
previous section. That is, 

(3-4) 

where we denote the critical region by C. Thus, after change of 

the integration variable, we define the beam-loss ratio r due to 
phase displacement in the form of the Gauss error function 

(3-5) 
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with 
lr 

n= 
(C-m)/ fir(Tc 1 l 

*(ES) 

It is obvious, from (3-5), that the larger !? and the smaller D, 

the smaller r. 

A real situation is generally different from the assumptions 

made early in this subsection. However, if we have a reasonable 

way for the coefficients of F and (D,+D1v ) to be approximated by 

some constant values, that is, %- and z, the loss estimation by 

(3-5) may be still fruitfull. 

3-b Effective Cooling Parameters ?? and5 

This subsection will discuss how we should choose the 

effective values of F and 5. Before we proceed, we shall make the 

important assumptions: 

1) The present cooling system has a perfectly exponential gain, 

that is, 

(3-G) 
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where E: is the distance from the center of the core, Edis the so 

called characteristic energy /l/ , and $ is the value of F(E) at 

the center of a stacked pulse. 

2) The standard deviation cr, of the distribution is related to 

the finite full energy spread AE~ of particles which 

deposited on the stacking orbit by 

are 

Jbxro = Ab, (3-7) 

Then it is trivial to estimate the displacement of 

distribution peak over one injection cycle, say, AEl. 

behavior of the peak is governed by the differential equation 

the 

The 

dE 
dt = F(E) ) 

with the initial condition 

E(o) = ~CJ . 

Substituting (3-6) into (3-8) and integrating both sides, 

(X-8) 

we have 

(j-9) 

Thus we know the central position between the front and rear peak 

over one injection cycle, 

s = wyr, t AF,/2. (3-10) 

Now, we define the approximated cooling parameters ?-and5 as 
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follows 

F = i(E), 

with 

(3-11-a) 

(3-11-b) 

Here we neglect DI and assume that the distribution after one 

injection cycle does not change significantly except for a the 

displacement of its peak. In fact, for the present case, DZq is 

about five times larger than D\ at the peak, as seen later. 

In order to ascertain the accuracy of the above approximation 

for several examples, the estimation of beam-loss by using 

(3-11-a) and (3-11-b) is compared with the result when Eq.(3-1) is 

solved numerically. In Table 3, these comparisons are summarized. 

They show that the loss ratio r by (3-5) is smaller than the exact 

value by about 10%. Therefore the estimation by using the 

mentioned 7 and D still has practical meaning. 

3-c Criterion for Cooling Parameters 

The estimate of the previous subsection is not accurate , but 

would be as a guide line for designing the tail cooling system. 

Since we have already derived an approximate relationship (3-5) 

between the beam-loss ratio and the cooling parameters, we 

furthermore give a general criterion which should be imposed on 

the tail cooling system in order to minimize beam loss. 

If we want the beam-loss ratio r less than some value, sayI 
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r0 

PO = Erjc hB> /criE , 
(3-12) 

the approximate cooling parameters must satisfy the equation 

Then, using the more explicit expression of 5 

75 = AT2~eTL, (3-14) 

where T is the revolution period and A is defined in Table 2, we 

have a quadratic inequality for F 

2 
-k - 

Tc AT’&& 

&Es ) (3-15) 
J 

where we make use of the relation 

MO - c = LIE,. 

It is trivial to obtain the solution of (3-15) 

with 

(3-16) 

\- an: 
1 (3-17) 2 

AT2Nb 
Q’= - 

Tc AEa , 

(3-18) 
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Given all the other parameters except no, we can write the 
right-hand side of (3-17) as a function of no alone, which we 

denote by O((n,) and is plotted in Fig.6. We can also derive a 
similar criterion formula for ?. Substitution of (3-10) into 

(3-11-a) yields 

Substituting further (3-19) into (3-11) and arranging 

have the quadratic inequality for $ 

Then the solution of (3-20) is 

(3-19) 

for ?, we 

(3-20) 

(3-21) 
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3-d Example 

As an example, we attempt to integrate numerically the 

non-linear Fokker-Planck equation which represents exactly tail 

cooling in the proposed accumulator /l/. In this calculation, we 

assume the RF stacked pulse is characterized by the parameters: 

Gaussian distribution, 

AEe = 18.0 (MeV), 

No = lo* . 

and the cooling system by the parameters: 

frequency range of l-2 GHz 

I?1 = 0.02, 

Tc = 2.0 set, 

T = 1.6~10-~ sec. 

Figs.7-a-7-c show coefficients of the Fokker-Planck equation. As 

the result of numerical integrations, we find that a beam fraction 

of 13.4% is lost during the next stacking process. Meanwhile the 

approximate method discussed in the earlier parts of this section 

gives a beam-loss of 11%. In this estimate by Eq.(3-5), we use 

the parameter 

z = WI*30 - -9.44 CMeV) 

,because we have Ed= 31(MeV) and ?? =-13(MeV/sec) which can be read 

by first-order linearization of the gain curve in Fig.7-a. 
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4. Conclusion 

The unavoidable effects of RF stacking on the cooling tail 

have been discussed in detail. It is still difficult to say that 

we have a through understanding of the non-adiabatic diffusion 

appearing in the present RF stacking, but its quantitative effect 

has been obtained at least for the proposed system /l/ which is 

directly available for cooling calculations. Unfortunately, in 

the present paper r long-range effects due to this non-adiabatic 

diffusion over a whole cooling time , that is, several houres, 

were not investigated. 

Further considerations of non-adiabatic variation in a non-linear 

system will be given elsewhere /6/. 

In addition, a simple method estimating beam-loss has been 

presented which can serve as a guide line for designing the tail 

cooling system. A more accurate estimate may also be possible by 

applying a perturbation technique. 
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Figure Captions 

Fig.6 : Critical curve for Fversus the parameter n, or rO 

Fig.7-a-7-c : Coefficients of the Fokker Planck equation (3-l). 

as functions of E. 

Fig.7-d 

E is the energy deviation from the cooling core. 

: Distribution of particles 

The RF stacked pulse is shown by the dotted line, and 

the pulse after Tc by the solid line. The shadowed 

area is the survival after the next stacking process. 
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Fig.3 
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Fig.4 
Non-Adiabatic Variation of Won-Linear System (Simple Model) 

Consider the infinite sequence of 
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Table 1 

Transfer Matrix 

X’= MX 

-a-- 
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m-B-- 82 
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-w--w 76 
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Table 2 

Cooling Parameters of Test Cases 

F= V/T , T : revolution periood 

D = D, + D2Y 

v= 2 Eb T W G S,, Sk 

D, = Et W G S; 

D2= A V2 

A = @Eo A /(4 T31T1 W2) 

Et= f k@ eZ Nk Rk /2T 

W = fmax -f,,,;,, ; bandwidth 

A = ln(fwrAY/fwl;n) 

sp= Sk= S,exp(-E/E* > ; sensitivity of pick-up and kicker 

E*= Ed /2 ( 14 MeV > 

G : electric gain 

Eo: total energy 

E: energy deviation 

Eb’ e ?/ Np Nk Rp Rk /T 

(3 = velocity 

f : noise figure 

k: Boltzman constant 

0 : temperature of amplifiers 

Np= Nk= 256 : number of pick-ups and kickers 

RppRk : impedence of pick-up and kicker 
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Table 3 

Results of the system given in Table 2 

171 0.04 0.01 0.02 0.02 0.01 

1 1 2 2 

-13.9 -12.5 -12.5 -20.0 

10.0 8.2 4.1 10.4 

18.5 16.5 4.84 9.57 

ln2 ln6 ln6 ln2 

w (~~21 1 
* 
F (MeV/sec) -14.2 
h 
D, (~10'~ eV2/sec) 10.5 

hD2 (x10" eV3/sec) 4.85 

ln2 

initial value 

mO (MeV) 

a0 (MeV) 

final value 

m-m0 (MeV) 

0 (MeV) 

7 

3.7 

-11 

4.5 

7 6 6 7 

3.7 3.7 3.7 3.7 

-11 -10 -9.5 -14 

6.3 6.0 4.5 4.6 

r(C,TC ) 0.86 0.83 0.96 0.99 0.65 

Estimation 

m-m0 (MeV) -10.5 -10.3 -8.2 -8.2 -13.7 

cl- (MeV) 4.7 6.7 6.3 4.5 5.3 

r(C,Q 1 0.78 0.71 0.83 0.90 0.53 


